Chapters

Hide chapters

Metal by Tutorials

Fourth Edition · macOS 14, iOS 17 · Swift 5.9 · Xcode 15

Section I: Beginning Metal

Section 1: 10 chapters
Show chapters Hide chapters

Section II: Intermediate Metal

Section 2: 8 chapters
Show chapters Hide chapters

Section III: Advanced Metal

Section 3: 8 chapters
Show chapters Hide chapters

28. Advanced Shadows
Written by Marius Horga & Caroline Begbie

Heads up... You’re accessing parts of this content for free, with some sections shown as scrambled text.

Heads up... You’re accessing parts of this content for free, with some sections shown as scrambled text.

Unlock our entire catalogue of books and courses, with a Kodeco Personal Plan.

Unlock now

Shadows and lighting are important topics in Computer Graphics. In Chapter 13, “Shadows”, you learned how to render basic shadows in two passes: one to render from the light source location to get a shadow map of the scene, and one to render from the camera location to incorporate the shadow map into the rendered scene.

Rasterization does not excel at rendering shadows and light because there’s no geometry that a vertex shader could precisely process. So now you’ll learn how to do it differently.

Time to conjure up your raymarching skills from the previous chapter, and use them to create shadows.

By the end of this chapter, you’ll be able to create various shadow types using raymarching in compute shaders:

  • Hard shadows.
  • Soft shadows.
  • Ambient Occlusion.

Hard Shadows

When creating shadows in a rasterized render pass, you create a shadow map, which requires you to bake the shadows.

With raymarching, you make use of signed distance fields (SDF). An SDF is a real-time tool that provides you with the precise distance to a boundary. This makes calculating shadows easy as they come for “free”, meaning that all of the information you need to compute shadows already exists and is available because of the SDF.

The principle is common to both rendering methods: If there’s an occluder between the light source and the object, the object is in the shadow. Otherwise, it’s lit.

Great! Time to put that wisdom down in code.

The Starter App

➤ In Xcode, open the starter app included with this chapter and build and run (or set up the SwiftUI Canvas preview).

The starter app
Yhi bbivzed ihd

struct Rectangle {
  float2 center;
  float2 size;
};
float distanceToRectangle(float2 point, Rectangle rectangle) {
  // 1
  float2 distances =
      abs(point - rectangle.center) - rectangle.size / 2;
  return
    // 2
    all(sign(distances) > 0)
    ? length(distances)
    // 3
    : max(distances.x, distances.y);
}
Shape subtraction
Ylore geqjxirrieq

float differenceOperator(float d0, float d1) {
  return max(d0, -d1);
}
float distanceToScene(float2 point) {
  // 1
  Rectangle r1 = Rectangle{float2(0.0), float2(0.3)};
  float d2r1 = distanceToRectangle(point, r1);
  // 2
  Rectangle r2 = Rectangle{float2(0.05), float2(0.04)};
  float2 mod = point - 0.1 * floor(point / 0.1);
  float d2r2 = distanceToRectangle(mod, r2);
  // 3
  float diff = differenceOperator(d2r1, d2r2);
  return diff;
}
float d2scene = distanceToScene(uv);
bool inside = d2scene < 0.0;
color = inside ? float4(0.8,0.5,0.5,1.0) :
  float4(0.9,0.9,0.8,1.0);
The initial scene
Fxi uzorued rzadu

float2 lightPos = 2.8 * float2(sin(time), cos(time));
float dist2light = length(lightPos - uv);
color *= max(0.3, 2.0 - dist2light);
A moving light
E jacofm cegqv

float getShadow(float2 point, float2 lightPos) {
  // 1
  float2 lightDir = lightPos - point;
  // 2
  for (float lerp = 0; lerp < 1; lerp += 1 / 300.0) {
    // 3
    float2 currentPoint = point + lightDir * lerp;
    // 4
    float d2scene = distanceToScene(currentPoint);
    if (d2scene <= 0.0) { return 0.0; }
  }
  return 1.0;
}
float shadow = getShadow(uv, lightPos);
color *= 2;
color *= shadow * .5 + .5;
A moving shadow
O gedefg ndizix

Sphere intersection
Mllaqa arwispetniud

float2 lightDir = normalize(lightPos - point);
float shadowDistance = 0.75;
float distAlongRay = 0.0;
for (float i = 0; i < 80; i++) {
  float2 currentPoint = point + lightDir * distAlongRay;
  float d2scene = distanceToScene(currentPoint);
  if (d2scene <= 0.001) { return 0.0; }
  distAlongRay += d2scene;
  if (distAlongRay > shadowDistance) { break; }
}
return 1.0;
A more accurate shadow
E luto emgulona qfoxan

Soft Shadows

Shadows are not only black or white, and objects aren’t just in shadow or not. Often times, there are smooth transitions between the shadowed areas and the lit ones.

struct Ray {
  float3 origin;
  float3 direction;
};

struct Sphere {
  float3 center;
  float radius;
};

struct Plane {
  float yCoord;
};

struct Light {
  float3 position;
};
float distToSphere(Ray ray, Sphere s) {
  return length(ray.origin - s.center) - s.radius;
}

float distToPlane(Ray ray, Plane plane) {
  return ray.origin.y - plane.yCoord;
}

float differenceOp(float d0, float d1) {
  return max(d0, -d1);
}

float unionOp(float d0, float d1) {
  return min(d0, d1);
}
The union operation
Khu ovooc olayemiup

float distToScene(Ray r) {
  // 1
  Plane p = Plane{0.0};
  float d2p = distToPlane(r, p);
  // 2
  Sphere s1 = Sphere{float3(2.0), 2.0};
  Sphere s2 = Sphere{float3(0.0, 4.0, 0.0), 4.0};
  Sphere s3 = Sphere{float3(0.0, 4.0, 0.0), 3.9};
  // 3
  Ray repeatRay = r;
  repeatRay.origin = fract(r.origin / 4.0) * 4.0;
  // 4
  float d2s1 = distToSphere(repeatRay, s1);
  float d2s2 = distToSphere(r, s2);
  float d2s3 = distToSphere(r, s3);
  // 5
  float dist = differenceOp(d2s2, d2s3);
  dist = differenceOp(dist, d2s1);
  dist = unionOp(d2p, dist);
  return dist;
}
float3 getNormal(Ray ray) {
  float2 eps = float2(0.001, 0.0);
  float3 n = float3(
    distToScene(Ray{ray.origin + eps.xyy, ray.direction}) -
    distToScene(Ray{ray.origin - eps.xyy, ray.direction}),
    distToScene(Ray{ray.origin + eps.yxy, ray.direction}) -
    distToScene(Ray{ray.origin - eps.yxy, ray.direction}),
    distToScene(Ray{ray.origin + eps.yyx, ray.direction}) -
    distToScene(Ray{ray.origin - eps.yyx, ray.direction}));
  return normalize(n);
}
color = 0;
uv.y = -uv.y;
// 1
Ray ray = Ray{float3(0., 4., -12), normalize(float3(uv, 1.))};
// 2
for (int i = 0; i < 100; i++) {
  // 3
  float dist = distToScene(ray);
  // 4
  if (dist < 0.001) {
    color = 1.0;
    break;
  }
  // 5
  ray.origin += ray.direction * dist;
}
// 6
float3 n = getNormal(ray);
color = float4(color.xyz * n, 1);
Colors representing normals
Pudacc cepborupxikc peqqebg

float lighting(Ray ray, float3 normal, Light light) {
  // 1
  float3 lightRay = normalize(light.position - ray.origin);
  // 2
  float diffuse = max(0.0, dot(normal, lightRay));
  // 3
  float3 reflectedRay = reflect(ray.direction, normal);
  float specular = max(0.0, dot(reflectedRay, lightRay));
  // 4
  specular = pow(specular, 200.0);
  return diffuse + specular;
}
Light light = Light{float3(sin(time) * 10.0, 5.0,
                           cos(time) * 10.0)};
float l = lighting(ray, n, light);
color = float4(color.xyz * l, 1.0);
A light circling the sphere
O caqym juslmerp hro qsruce

float shadow(Ray ray, Light light) {
  float3 lightDir = light.position - ray.origin;
  float lightDist = length(lightDir);
  lightDir = normalize(lightDir);
  float distAlongRay = 0.01;
  for (int i = 0; i < 100; i++) {
    Ray lightRay = Ray{ray.origin + lightDir * distAlongRay,
                       lightDir};
    float dist = distToScene(lightRay);
    if (dist < 0.001) { return 0.0; }
    distAlongRay += dist;
    if (distAlongRay > lightDist) { break; }
  }
  return 1.0;
}
float s = shadow(ray, light);
color = float4(color.xyz * l * s, 1.0);
Light casting shadows
Poqgz poygigy whiwufy

// 1
float shadow(Ray ray, float k, Light l) {
  float3 lightDir = l.position - ray.origin;
  float lightDist = length(lightDir);
  lightDir = normalize(lightDir);
  // 2
  float light = 1.0;
  float eps = 0.1;
  // 3
  float distAlongRay = eps * 2.0;
  for (int i=0; i<100; i++) {
    Ray lightRay = Ray{ray.origin + lightDir * distAlongRay,
                       lightDir};
    float dist = distToScene(lightRay);
    // 4
    light = min(light, 1.0 - (eps - dist) / eps);
    // 5
    distAlongRay += dist * 0.5;
    eps += dist * k;
    // 6
    if (distAlongRay > lightDist) { break; }
  }
  return max(light, 0.0);
}
// 1
bool hit = false;
for (int i = 0; i < 200; i++) {
  float dist = distToScene(ray);
  if (dist < 0.001) {
    hit = true;
    break;
  }
  ray.origin += ray.direction * dist;
}
// 2
float3 col = 1.0;
// 3
if (!hit) {
  col = float3(0.8, 0.5, 0.5);
} else {
  float3 n = getNormal(ray);
  Light light = Light{float3(sin(time) * 10.0, 5.0,
                             cos(time) * 10.0)};
  float l = lighting(ray, n, light);
  float s = shadow(ray, 0.3, light);
  col = col * l * s;
}
// 4
Light light2 = Light{float3(0.0, 5.0, -15.0)};
float3 lightRay = normalize(light2.position - ray.origin);
float fl = max(0.0, dot(getNormal(ray), lightRay) / 2.0);
col = col + fl;
color = float4(col, 1.0);
Shadow Tones
Bjojiq Depag

Ambient Occlusion

Ambient occlusion (AO) is a global shading technique, unlike the Phong local shading technique you learned about in Chapter 10, “Lighting Fundamentals”. AO is used to calculate how exposed each point in a scene is to ambient lighting which is determined by the neighboring geometry in the scene.

Plane p{0.0};
float d2p = distToPlane(r, p);
return d2p;
Ambient occlusion starter scene
Ipmioyg epzriwuor qdexzix pbuha

struct Box {
  float3 center;
  float size;
};
float distToBox(Ray r, Box b) {
  // 1
  float3 d = abs(r.origin - b.center) - float3(b.size);
  // 2
  return min(max(d.x, max(d.y, d.z)), 0.0)
              + length(max(d, 0.0));
}
// 1
Sphere s1 = Sphere{float3(0.0, 0.5, 0.0), 8.0};
Sphere s2 = Sphere{float3(0.0, 0.5, 0.0), 6.0};
Sphere s3 = Sphere{float3(10., -5., -10.), 15.0};
float d2s1 = distToSphere(r, s1);
float d2s2 = distToSphere(r, s2);
float d2s3 = distToSphere(r, s3);
// 2
float dist = differenceOp(d2s1, d2s2);
dist = differenceOp(dist, d2s3);
// 3
Box b = Box{float3(1., 1., -4.), 1.};
float dtb = distToBox(r, b);
dist = unionOp(dist, dtb);
dist = unionOp(d2p, dist);
return dist;
The ambient occlusion scene
Sgi olriuvh ahnluxaew zteli

float ao(float3 pos, float3 n) {
    return n.y * 0.5 + 0.5;
}
col = col * l * s;
float o = ao(ray.origin, n);
col = col * o;
col = col + fl;

// 1
float eps = 0.01;
// 2
pos += n * eps * 2.0;
// 3
float occlusion = 0.0;
for (float i = 1.0; i < 10.0; i++) {
  // 4
  float d = distToScene(Ray{pos, float3(0)});
  float coneWidth = 2.0 * eps;
  // 5
  float occlusionAmount = max(coneWidth - d, 0.);
  // 6
  float occlusionFactor = occlusionAmount / coneWidth;
  // 7
  occlusionFactor *= 1.0 - (i / 10.0);
  // 8
  occlusion = max(occlusion, occlusionFactor);
  // 9
  eps *= 2.0;
  pos += n * eps;
}
// 10
return max(0.0, 1.0 - occlusion);
Ambient occlusion
Ujxiiwf izmbipoot

struct Camera {
  float3 position;
  Ray ray{float3(0), float3(0)};
  float rayDivergence;
};
Camera setupCam(float3 pos, float3 target,
                float fov, float2 uv, int x) {
  // 1
  uv *= fov;
  // 2
  float3 cw = normalize(target - pos);
  // 3
  float3 cp = float3(0.0, 1.0, 0.0);
  // 4
  float3 cu = normalize(cross(cw, cp));
  // 5
  float3 cv = normalize(cross(cu, cw));
  // 6
  Ray ray = Ray{pos,
                normalize(uv.x * cu + uv.y * cv + 0.5 * cw)};
  // 7
  Camera cam = Camera{pos, ray, fov / float(x)};
  return cam;
}
Ray ray = Ray{float3(0., 4., -12), normalize(float3(uv, 1.))};
float3 camPos = float3(sin(time) * 10., 3., cos(time) * 10.);
Camera cam = setupCam(camPos, float3(0), 1.25, uv, width);
Ray ray = cam.ray;
Camera circling the scene
Mijeja qezzzulg qri rdofo

Key Points

  • Raymarching produces better quality shadows than rasterized shadows.
  • Hard shadows are not realistic, as there are generally multiple light sources in the real world.
  • Soft shadows give better transitions between areas in shadow and not.
  • Ambient occlusion does not depend on scene lighting, but on neighboring geometry. The closer geometry is to an area, the darker the area is.

Where to Go From Here?

In addition to the shadow types you learned in this chapter, there are other shadow techniques such as Screen Space Ambient Occlusion and Shadow Volumes. If you’re interested in learning about these, review references.markdown in the resources folder for this chapter.

Have a technical question? Want to report a bug? You can ask questions and report bugs to the book authors in our official book forum here.
© 2025 Kodeco Inc.

You’re accessing parts of this content for free, with some sections shown as scrambled text. Unlock our entire catalogue of books and courses, with a Kodeco Personal Plan.

Unlock now