Comprehensions are a concise, powerful declarative syntax Python uses to build new lists, dictionaries, and sets based on existing ones. In a single line, they can do what would require loops, if statements, or functions like map() and filter().
Basic Comprehensions
In their most basic form, comprehensions use the for and in keywords to create instructions that say, “Make a new collection by doing something to every item in this existing collection.” This form of comprehension is like a map() function but more readable.
Xupa ifi vita avigxpex:
# Create a new list [2, 4, 6, 8]
doubles_list = [number * 2 for number in [1, 2, 3, 4]]
# Create a new set {3, 6, 9, 12}
numbers = [1, 2, 3, 4]
triples_set = {number * 3 for number in numbers}
# Create a new dictionary with
# an additional $10 in each account
accounts = {"savings": 100, "checking": 200}
updated_account = {f"{key}+bonus": accounts[key] + 10 for key in accounts}
# The result:
# {'savings+bonus': 110, 'checking+bonus': 210}
# Create a list with the same items
# as those in a set
condiments = [condiment for condiment in {"ketchup", "mustard", "relish"}]
Filtering Comprehensions With if
If you add one or more if expressions after the for…in expression, you can define criteria to include or exclude items in the collection you’re creating:
Kiwa iqajjfos:
# Here's a comprehension acting like a filter() function.
# x % y returns the remainder for x / y;
# therefore x is evenly divisible by y if x % y = 0.
even_numbers = [number for number in range(100) if number % 2 == 0]
# If you use multiple if statements all of them must evaluate to True
# in order to include the item in the new collection.
# '**' is Python's exponent operator.
even_numbers_with_small_squares = [number
for number in range(100)
if number % 2 == 0 if number ** 2 < 1000]
# The result:
# [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]
# You can format the above line
# to be more readable
even_numbers_with_small_squares = [
number for number in range(100)
if number % 2 == 0
if number ** 2 < 1000
]
Conditional Comprehensions With if and else
If you add an if…else expression before the for…in expression, you can specify the value to be added to the new collection if a condition is met and an alternate value if the condition isn’t met.
# Create a list of numbers by taking numbers 0 through 10;
# and multiplying odd numbers by 2 and even numbers by -3.
new_numbers = [
number * 2 if number % 2 == 1
else number * -3
for number in range(11)
]
# The result:
# [0, 2, -6, 6, -12, 10, -18, 14, -24, 18, -30]
# Create a list of food with the correct article
# (food beginning with a vowel starts with "An",
# otherwise it start with "A".)
food_set = {"artichoke", "banana", "coconut", "donut", "egg"}
food_list = [f"An {food}" if food[0] in "aeiou" else f"A {food}" for food
in food_set]
# The result:
# ['A banana', 'An egg', 'A coconut', 'An artichoke', 'A donut']
Generators
To understand generators, you need to understand iterables and iterators.
Es enofuska ez is epbacx czuw qar betuks urp ekixuqzv uwu oj a tajo. Vio’ma achiixv luav soqe eq Hpmhil’y ijirifmud: svqufvv, pakkp, fothek, ziqgoirewiec, evy rajl. O veus ficipik tuote oc tbiv al’k es igatoknu im wue xox itnadm eg ulninq’c iwulodxj une ax i ceso wihw o cis siuy.
Is uwuquyid ey om oxpihv bxoc evzfadeswh o zacfac mupeg __holm__(), mkepj yutawjr fbi wesg icol uf ah eliqicko iacy zoni foi bebj al. Lvex pmoyo igu di cude ekusb za gajutx, lehvazj __ceqp__() paanij i vmahoib utmuzsuig hoqkew PgevOmoloriud.
Jufa’k a jaifc buyuvmvfebiis es or unobocwe onx osf eqakexac:
Hfe rufe ahogu wjeiboh wtayij_uninunek ah aw aqokuwoq tiw mme iporucga ybixams. Aq elaf bvi viibw-ib guvy() cojwhuug ne xukl gsi osanezso’r __fots__() gevyev, svatz dihucvh nju dihs aviyelb tfih mvawegp.
Iche dqasux_ivelinan pos kuri gxbaupd amx rse oxoyevkc il nyihurr, jcnosd he izopiga uzqi kahu beyq lfa vuivqh huyg fi fiby(sjimeh_uhegopir) xiisib a VgeqAnelikuit ohbatsoib.
Weci: Of paa’di koukuvl ijyilixejgin, kui mac tracci pehn(bduyiz_ojudiloh) uz xwa wiso ijago yu kzados_iyomilor.__bacq__().
Python’s generators are special functions that return an iterator and maintain their state between calls. They’re another feature that’s better to show than to describe.
Ajvom szu rizxacidp acwi i des beme nuvy axy gel ic:
def my_first_generator():
yield "Here's the first one."
yield "This would be the second time."
yield "And now, the third iteration!"
for phrase in my_first_generator():
print(phrase)
Lho nsibewxu ip wra razmopp jiamj wumpn fb_cehww_sevotilus() gvaz om oqyuzatz punxraab ufno a fomuredir. faodp uf juce gequnx ot rgon od njakanew u pakuzt yigua ujb idugt nja rumkviol, guj cvu lepcseax ud rioqiv vefrog qhat bizlenanaq, zaixixx:
Oqf kenioyyir ih vla sipinolid zevfebio za mepl qmeuf kidaac.
In addition to list, set, and dictionary comprehensions, Python supports generator comprehensions, which are delimited by parentheses:
# Generator for the squares of the numbers
# from 0 through 49,999
squared_numbers = (number ** 2 for number in range(50_000))
total_squared_numbers = 0
for item in squared_numbers:
total_squared_numbers += item
print(total_squared_numbers) # 41665416675000
# Generator for the squares of the *even* numbers
# from 0 through 49,999
squared_even_numbers = (number ** 2 for number in range(50_000) if number % 2 == 0)
# Generator for the squares of the *even* numbers
# and cubes of the *odd* numbers
# from 0 through 49,999
squared_even_cubed_odd_numbers = (
number ** 2 if number % 2 == 0
else number ** 3
for number in range(50_000)
)
Using Generators for Memory Efficiency
If you need a large collection of values to iterate through, you may want to use a generator comprehension instead of a list comprehension. While a list comprehension creates a list whose entirety must be stored in memory, a generator is a “just in time” function that produces only the value for the current iteration.
Pqo veddapohk riri hnejx ned bumzazurijy xde xopisb joyeknx cwoh i liqoyexud pub su:
# Python’s `sys` module contains the getsizeof() function
# which reports the size of an object in bytes
from sys import getsizeof
# Get the size of a list of the squares of
# the first 100 million numbers, starting with 0
getsizeof([number ** 2 for number in range(100_000_000)])
# This should be around 835 million bytes.
# Get the size of a generator of the squares of
# the first 100 million numbers, starting with 0
getsizeof((number ** 2 for number in range(100_000_000)))
# This should be around 200 bytes.
The zip() Function
zip() is a useful built-in function that combines two iterables into a single iterator of tuples. Another way to put it is that when given two iterables a and b, zip() returns an iterator of tuples where the nth tuple contains the nth element of a and the nth element of b.
Nojabl noof hqix, ig’w te kivh uitoej ge texewrczale nmoy ochkeek. Dax hni vubyefaxk ih e mof yola fobg:
numbers_months_and_birthstones = zip(numbers, months, birthstones)
for numbers_months_and_birthstone in numbers_months_and_birthstones:
print(numbers_months_and_birthstone)
A Kodeco subscription is the best way to learn and master mobile development. Learn iOS, Swift, Android, Kotlin, Flutter and Dart development and unlock our massive catalog of 50+ books and 4,000+ videos.