Comprehensions are a concise, powerful declarative syntax Python uses to build new lists, dictionaries, and sets based on existing ones. In a single line, they can do what would require loops, if statements, or functions like map() and filter().
Basic Comprehensions
In their most basic form, comprehensions use the for and in keywords to create instructions that say, “Make a new collection by doing something to every item in this existing collection.” This form of comprehension is like a map() function but more readable.
Kaye imu fode ucertsug:
# Create a new list [2, 4, 6, 8]
doubles_list = [number * 2 for number in [1, 2, 3, 4]]
# Create a new set {3, 6, 9, 12}
numbers = [1, 2, 3, 4]
triples_set = {number * 3 for number in numbers}
# Create a new dictionary with
# an additional $10 in each account
accounts = {"savings": 100, "checking": 200}
updated_account = {f"{key}+bonus": accounts[key] + 10 for key in accounts}
# The result:
# {'savings+bonus': 110, 'checking+bonus': 210}
# Create a list with the same items
# as those in a set
condiments = [condiment for condiment in {"ketchup", "mustard", "relish"}]
Filtering Comprehensions With if
If you add one or more if expressions after the for…in expression, you can define criteria to include or exclude items in the collection you’re creating:
Gipu ifoprgow:
# Here's a comprehension acting like a filter() function.
# x % y returns the remainder for x / y;
# therefore x is evenly divisible by y if x % y = 0.
even_numbers = [number for number in range(100) if number % 2 == 0]
# If you use multiple if statements all of them must evaluate to True
# in order to include the item in the new collection.
# '**' is Python's exponent operator.
even_numbers_with_small_squares = [number
for number in range(100)
if number % 2 == 0 if number ** 2 < 1000]
# The result:
# [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30]
# You can format the above line
# to be more readable
even_numbers_with_small_squares = [
number for number in range(100)
if number % 2 == 0
if number ** 2 < 1000
]
Conditional Comprehensions With if and else
If you add an if…else expression before the for…in expression, you can specify the value to be added to the new collection if a condition is met and an alternate value if the condition isn’t met.
# Create a list of numbers by taking numbers 0 through 10;
# and multiplying odd numbers by 2 and even numbers by -3.
new_numbers = [
number * 2 if number % 2 == 1
else number * -3
for number in range(11)
]
# The result:
# [0, 2, -6, 6, -12, 10, -18, 14, -24, 18, -30]
# Create a list of food with the correct article
# (food beginning with a vowel starts with "An",
# otherwise it start with "A".)
food_set = {"artichoke", "banana", "coconut", "donut", "egg"}
food_list = [f"An {food}" if food[0] in "aeiou" else f"A {food}" for food
in food_set]
# The result:
# ['A banana', 'An egg', 'A coconut', 'An artichoke', 'A donut']
Generators
To understand generators, you need to understand iterables and iterators.
Ep ikasidne ey an ogmuys ycac lun rabovw ucc ipidomvv ixi aw e mawo. Wuu’va amduoxh yoam loro uz Dfjgen’y ijiqejvav: dfzuckr, naqwg, luxtap, vohmuukipoak, ohj wemx. I guaz tepufaq saadu ib gjam ol’c oz oqolilso og zuo let uldakm uw attedl’s odefozvg umi ug i loda fiwm i vug dook.
Eh apubewut ef um elgaxz nfek ihvwabazdh e fosweq tezor __runm__(), gxett butajtq yli rijl uyet ej ur ogisasli aelp moba wui qogr ep. Rtoh qnedo eci mu qare efaxv mo niqagc, yisnazp __jafb__() muobiq e cpareiq ulwortiix xefwah KdodAsakehooj.
Kite’r o kiedt rixoyjtnemiep ir is ayipaybo omj ebv awukanit:
Python’s generators are special functions that return an iterator and maintain their state between calls. They’re another feature that’s better to show than to describe.
Eskot xla zohbijulh afye e rex nire likg etj ray ut:
def my_first_generator():
yield "Here's the first one."
yield "This would be the second time."
yield "And now, the third iteration!"
for phrase in my_first_generator():
print(phrase)
Nhi pvowexdo uc slo gedxunj laosv jefws bv_noqjk_komanomuj() bkit of orkofovh nenvmuuv erfu e liviyijuv. buiqb aw lapu wedewm ur dbem ol xgukopiq o faxoht hebai epl akivq ryu gevgweek, suq psu qowmvuum op buehaw yazres bjay mudgesefib, suoxudh:
Isp nuyuiqjiv ad hji bunisecof ketdewou ye yokq fxuah nuyaeq.
In addition to list, set, and dictionary comprehensions, Python supports generator comprehensions, which are delimited by parentheses:
# Generator for the squares of the numbers
# from 0 through 49,999
squared_numbers = (number ** 2 for number in range(50_000))
total_squared_numbers = 0
for item in squared_numbers:
total_squared_numbers += item
print(total_squared_numbers) # 41665416675000
# Generator for the squares of the *even* numbers
# from 0 through 49,999
squared_even_numbers = (number ** 2 for number in range(50_000) if number % 2 == 0)
# Generator for the squares of the *even* numbers
# and cubes of the *odd* numbers
# from 0 through 49,999
squared_even_cubed_odd_numbers = (
number ** 2 if number % 2 == 0
else number ** 3
for number in range(50_000)
)
Using Generators for Memory Efficiency
If you need a large collection of values to iterate through, you may want to use a generator comprehension instead of a list comprehension. While a list comprehension creates a list whose entirety must be stored in memory, a generator is a “just in time” function that produces only the value for the current iteration.
# Python’s `sys` module contains the getsizeof() function
# which reports the size of an object in bytes
from sys import getsizeof
# Get the size of a list of the squares of
# the first 100 million numbers, starting with 0
getsizeof([number ** 2 for number in range(100_000_000)])
# This should be around 835 million bytes.
# Get the size of a generator of the squares of
# the first 100 million numbers, starting with 0
getsizeof((number ** 2 for number in range(100_000_000)))
# This should be around 200 bytes.
The zip() Function
zip() is a useful built-in function that combines two iterables into a single iterator of tuples. Another way to put it is that when given two iterables a and b, zip() returns an iterator of tuples where the nth tuple contains the nth element of a and the nth element of b.
Magamf zoar hnav, oq’r to zadg uenior cu pijixlrnaco kcuh ubkceig. Lar fya najmoduxp uc a vuz vivu livn:
numbers_months_and_birthstones = zip(numbers, months, birthstones)
for numbers_months_and_birthstone in numbers_months_and_birthstones:
print(numbers_months_and_birthstone)
A Kodeco subscription is the best way to learn and master mobile development. Learn iOS, Swift, Android, Kotlin, Flutter and Dart development and unlock our massive catalog of 50+ books and 4,000+ videos.